Seat No. Total No. of Pages: 4

S.E. (Civil Engg.) (Part - II) (Semester - III)

Examination, April - 2016

ENGINEERING MATHEMATICS - III (Revised)

Sub. Code: 63338

Day and Date: Friday, 29 - 04 - 2016

Total Marks: 100

Time: 03.00 p.m. to 06.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of Calculator is allowed.

SECTION - I

Q1) Solve any three of the following:

[18]

a)
$$(D^2 - 6D + 13) y = e^{3x} \sin 4x + 3^x$$

b)
$$(D^2 + 4) y = x \sin 3x$$

c)
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$

d) The differential equation of strut of length *l* freely hinged at each end is

$$EI\frac{d^2y}{dx^2} + Py = \frac{-Wl^2}{8}Sin\left(\frac{\pi x}{l}\right).$$
 Find the bending of a strut at x where
$$\frac{P}{EI} = n^2.$$

Q2) Attempt any two of the following:

[16]

a) A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$. Show that \overline{F} is irrotational and find its scalar potential. Also find Grad (Div \overline{F}).

b)	If \bar{a}	\overline{t} is a constant vector and $\overline{r} = xi + y$	$\overline{r} = xi + yj + zk$ then prove that				
	i)	$\nabla(\overline{a}\bullet\overline{r})=\overline{a}$					
	ii)	$\operatorname{Div}(\overline{a} \times \overline{r}) = 0$					

iii) Div
$$(\overline{a} \cdot \overline{r})\overline{a} = a^2$$

iv) Curl
$$(\overline{a} \times \overline{r}) = 2\overline{a}$$

c) If
$$\overline{F} = (x + y + 1)i + j - (x + y)k$$
 then prove that $\overline{F} \cdot \text{Curl } \overline{F} = 0$ and if $\phi = x^3 + y^3 + z^3 - 3xyz$, find $\overline{F} \cdot \nabla \phi$ where $\overline{F} = xi + yj + zk$.

Q3) Attempt any two of the following:

[16]

a) From the following data find the line of regression of x on y and estimate x when y = 105

$$x = 44$$
 58 49 46 58 56 48 46 48 47
 $y = 88$ 114 102 113 91 89 102 93 114 94

b) Fit a curve of the form $y = ab^x$ from the following data

$$x = 2$$
 3 4 5 6
 $y = 144$ 172.8 207.4 248.8 298.5

c) Estimate y when x = 12 by fitting a straight line to the following data

```
x = 1 2 4 5 6 8 9 10

y = 52.5 58.7 70.2 75.4 81.1 95.5 102.2 108.2
```

SECTION - II

Q4) Attempt any two of the following:

[16]

- a) If ten percent of bolts produced by a machine are defective then determine the probability that out of 10 bolts, chosen at random
 - i) one
 - ii) none
 - iii) at most 2
 - iv) at least 2 bolts will be defective

b) A skilled typist, on routine work, kept a record of mistakes made per day during 300 working days.

Mistakes per day	0	1	2	3	4	5	6
No. of days	143	90	42	12	9	3	1

Fit a poisson distribution to the above data & hence calculate theoretical frequencies.

- c) i) The diameter of an electric cable is assumed to be continuous random variate with function f(x) = 6x (1-x), $0 \le x \le 1$ verify that f(x) is a probability density function.
 - ii) Weights of 4000 students are found to be normally distributed with mean 50 kgs & standard deviation 5 kgs. Find the number of students with weights less than 45 kgs.

[Given: For S.N.V. Z area from Z = 0 to Z = 1 is 0.3413]

Q5) Attempt any three from the following:

[18]

- a) Find laplace transform of t cos 2t. cosht.
- b) Find laplace transform of $\frac{d}{dt} \left(\frac{\sin t}{t} \right)$.
- c) Find inverse laplace transform of $\frac{s(s^2+2)}{(s+1)^2(s^2+1)}$.
- d) Use laplace transform to solve

$$y'' - 4y' + 4y = 64\sin 2t$$
 $y(0)=0$, $y'(0)=1$.

Q6) Attempt any two of the following:

[16]

- a) Show that the function $U=x^3-3xy^2$ is harmonic and find the corresponding analytic function.
- b) Evaluate using Cauchy's integral formula

i)
$$\int \frac{e^{2z}}{(z-1)(z-2)} dz$$
, where c is the circle, $|z|=3$

- ii) $\int_{c} \frac{\cos \pi z}{z^2 1} dz \text{ around a rectangle with vertices } 2 \pm i, -2 \pm i$
- c) Evaluate $\int_{c}^{c} \frac{z^2 z + 1}{z 1} dz$ where c is the circle
 - i) |z| = 1
 - ii) |z| = 0.5

